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Channel-facilitated membrane transport: Transit probability and interaction
with the channel
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Transport of metabolites between cells and between subcellular compartments is facilitated by
special protein channels that form aqueous pores traversing biological membranes. Accumulating
evidence demonstrates that solute-specific channels display pronounced binding to the
corresponding solutes. In this paper we rationalize this observation by showing that a wide and deep
potential well inside the channel is able to greatly increase the transit probability of the particle
through the channel. Using a one-dimensional diffusion model with radiation boundary conditions,
we give exact analytical expressions for the particle translocation probabilities. We also run
Brownian dynamics simulations to verify the model and the quantitative predictions of our theory.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1475758#
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I. INTRODUCTION

It is now well established that transport of various m
tabolites across cellular and organelle membranes oc
through protein channels.1 Therefore one of the main goa
of membrane biophysics is to understand how these chan
work. Here we study a fragment of this general proble
namely, how does solute-channel interaction influence
probability that the solute, having entered the channel,
traverse the membrane?

Accumulating evidence suggests that metabolite-spe
channels have evolved to bind corresponding metabo
molecules. For example, it is long recognized that the su
specific channel, maltoporin, shows pronounced interact
with penetrating sugars.2,3 The binding is so strong that re
cently it has become possible to observe the time-reso
events of single sugar molecule translocation through
channel pore.4,5 Another recent example6 illustrates the im-
portance of solute-channel interactions in antibiotic trans
cation through bacterial general porin, OmpF. Interestin
in this case it is not the bacterial channel that has evolve
bind an antibiotic molecule~antibiotics kill bacteria!; it is the
attacking organisms, molds, which have evolved to prod
antibiotics that effectively penetrate bacterial walls.

In this article we study how the interaction with th
channel influences the translocation of a metabolite m
ecule, assuming that its size is small compared to the cha
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length. A similar problem concerning ion translocation w
recently addressed using the Fokker–Planck equation
phase space.7 Our theory, which permits us to avoid som
difficulties inherent to this approach, is developed in t
framework of a one-dimensional diffusion model with th
radiation boundary conditions. Previously,8 we derived these
boundary conditions to study particle number fluctuations
a simple case of a cylindrical channel. We found an expr
sion for the radiation parameter~rate constant! in terms of
the channel radius and the diffusion constant in the b
outside the channel. We used this model to analyze spe
characteristics of particle number fluctuations and show
excellent agreement between theory and computer sim
tions that did not contain any adjustable parameters.

One of the main results of the present study is gene
exact expressions for the translocation probabilities for p
ticles that enter the channel from either side of the me
brane. They are derived in Sec. III and given by Eq.~3.14!.
Detailed analysis of these expressions is performed in S
IV. It shows that the presence of a deep potential well t
occupies most of the channel length makes the transloca
more probable. To test our theory we run Brownian dyna
ics simulations as described in Sec. V. We found excell
agreement between the translocation probabilities predi
by the theory and obtained in simulations. Some import
factors determining the efficiency of the channel, but omit
in our analysis, are discussed in the concluding section.

II. THE MODEL

Consider a particle that enters a membrane channel f
the left att50. Sometime later this particle will escape th
channel either on the same or opposite side of the membr
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Our goal is to calculate probabilities of both outcomes
particles that enter the channel from both sides.

We will model the particle motion in the channel b
one-dimensional diffusion on the interval (0,L) ~see Fig. 1!.
The interaction of the particle with the channel will be tak
into account by assuming that~a! the diffusion occurs in the
potential U(x), and ~b! the diffusion coefficientD(x) de-
pends on particle positionx. The behavior of the particle in
the channel is described by the propagator or Green func
G(x,tux0), which is the probability density to find the pa
ticle at pointx at time t assuming that att50 the particle
position wasx5x0 . The propagator satisfies the diffusio
~Smoluchowski! equation

]G

]t
5

]

]x H D~x!e2bU(x)
]

]x
@GebU(x)#J , ~2.1!

where b5(kBT)21, kB and T are the Boltzmann constan
and absolute temperature, with the initial condition

G~x,0ux0!5d~x2x0!. ~2.2!

Boundary conditions imposed at the channel ends desc
escape of the particle from the channel. They have the f
of radiation boundary conditions

]

]x
@GebU(x)#ux505

k0

D~0!
ebU(0)G~0,tux0!,

~2.3!

2
]

]x
@GebU(x)#ux5L5

kL

D~L !
ebU(L)G~L,tux0!,

where k0 and kL are the rate constants characterizing
efficiency of the escape~k5` and k50 correspond to ab
sorbing and reflecting end points, respectively!.

FIG. 1. A sketch of the system under study. Brownian particles wan
freely in two reservoirs connected by a cylindrical channel of lengthL and
radius a. The black circle represents a particle diffusing in the chann
There is no interaction between particles; any number of them can be in
channel simultaneously.
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III. TRANSLOCATION PROBABILITIES

Using the propagator one can find the survival proba
ity S(tux0), which is the probability for a particle that starte
at position x5x0 , has not escaped from the channel
time t,

S~ tux0!5E
0

L

G~x,tux0!dx. ~3.1!

The probability density for the particle lifetime in the cha
nel is given by

w~ tux0!52
dS~ tux0!

dt
52E

0

L ]G~x,tux0!

]t
dx. ~3.2!

Integrating both sides of the diffusion equation in Eq.~2.1!
with respect tox from 0 toL and using the boundary cond
tions in Eq.~2.3!, one finds

w~ tux0!5k0G~0,tux0!1kLG~L,tux0!

5 f 0~ tux0!1 f L~ tux0!. ~3.3!

This gives w(tux0) as a sum of two probability fluxes
f 0(tux0)5k0G(0,tux0) and f L(tux0)5kLG(L,tux0), that es-
cape the channel from the two ends at timet. The total
probabilities for the particle to escape through the left a
right ends of the channel, denoted asP0(x0) andPL(x0), are

P0~x0!5E
0

`

f 0~ tux0!dt5k0E
0

`

G~0,tux0!dt,

~3.4!

PL~x0!5E
0

`

f L~ tux0!dt5kLE
0

`

G~L,tux0!dt.

Using the definitions introduced above one can check th

P0~x0!1PL~x0!5E
0

`

w~ tux0!dt51. ~3.5!

It is convenient to introduce an auxiliary functio
F(xux0), defined as

F~xux0!5E
0

`

G~x,tux0!dt. ~3.6!

Then we can write the probabilities in Eq.~3.4! as

P0~x0!5k0F~0ux0!, PL~x0!5kLF~Lux0!. ~3.7!

Using Eqs.~2.1!–~2.3! one can check thatF(xux0) satisfies

d

dx H D~x!e2bU(x)
d

dx
@ebU(x)F~xux0!#J 52d~x2x0!,

~3.8!

with the boundary conditions

d

dx
@ebU(x)F~xux0!#ux505

k0

D~0!
ebU(0)F~0ux0!,

~3.9!

2
d

dx
@ebU(x)F~xux0!#ux5L5

kL

D~L !
ebU(L)F~Lux0!.

One can findF(xux0) from Eqs.~3.8! and~3.9! and then the
probabilities using Eq.~3.7!. This leads to
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P0~x0!5

k̃0F11 k̃L*x0

L ebU(y)
dy

D~y!G
k̃01 k̃L1 k̃0k̃L*0

LebU(y)
dy

D~y!

,

~3.10!

PL~x0!5

k̃LF11 k̃0*0
x0ebU(y)

dy

D~y!G
k̃01 k̃L1 k̃0k̃L*0

LebU(y)
dy

D~y!

,

where we have introduced the notations

k̃05k0e2bU(0), k̃L5kLe2bU(L). ~3.11!

The probabilities in Eq.~3.10! satisfy the normalization con
dition in Eq. ~3.5!.

In this paper we are interested in translocation probab
ties, that can be easily obtained from the general express
in Eq. ~3.10!. For particles that enter the channel from t
left (x050) and right (x05L) these probabilities, respec
tively, are

PL~0!5
k̃L

k̃01 k̃L1 k̃0k̃L*0
LebU(y)

dy

D~y!

,

~3.12!

P0~L !5
k̃0

k̃01 k̃L1 k̃0k̃L*0
LebU(y)

dy

D~y!

.

It is convenient to introduce a notation for the potenti
energy difference along the channel

DU5U~L !2U~0!. ~3.13!

In addition, for certainty we takeU(0)50. This allows us to
write the translocation probabilities in the form

PL~0!5
kLe2bDU

k01kLe2bDU1k0kLe2bDU*0
LebU(y)

dy

D~y!

,

~3.14!

P0~L !5
k0

k01kLe2bDU1k0kLe2bDU*0
LebU(y)

dy

D~y!

.

The translocation probabilities in Eq.~3.14! can be used
to find the probabilities that particles do not translocate a
escape the channel through the same end where they en
The nontranslocation probabilities are

P0~0!512PL~0!,
~3.15!

PL~L !512P0~L !.

The probabilities given in Eqs.~3.14! and ~3.15! are one of
the main results of this paper.

IV. DISCUSSION

We begin our discussion of the translocation probab
ties in Eq.~3.14! with an observation that the ratio of thes
Downloaded 31 May 2002 to 128.231.6.52. Redistribution subject to AI
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probabilities does not depend on the potential profileU(x)
and depends only on the potential differenceDU:

PL~0!

P0~L !
5

kL

k0
e2bDU. ~4.1!

The translocation probabilities reach their maximum valu
when a deep potential well occupies the entire channe
that the integral in Eq.~3.14! can be neglected. The max
mum values are

PL
max~0!5

kLe2bDU

k01kLe2bDU , P0
max~L !5

k0

k01kLe2bDU .

~4.2!

The translocation probabilities take these maximum val
when intrachannel equilibration occurs much faster than
other processes. This happens whenD(x)→`.

Next, we indicate that in the limiting case of the mem
brane of zero thickness (L5DU50) separating two identi-
cal solutions (k05kL) our theory recovers the trivial result

PL~0!5P0~L !5 1
2. ~4.3!

When DU50 and k05kL5k, the translocation prob-
abilities are equal to one another and given by

P0~L !5PL~0!5Ptr5
1

21k*0
LebU(y)

dy

D~y!

. ~4.4!

In the absence of the potential and for position-independ
diffusion coefficient, D(x)5const5D, the translocation
probability in Eq.~4.4! takes the form

Ptr5
1

21
k

D
L

. ~4.5!

Previously, we found that for a cylindrical channel of radi
a the rate constant is given by8

k5
4Db

pa
, ~4.6!

whereDb is the particle diffusion constant in the bulk whic
in general may differ from the diffusion constantD in the
channel. Substituting thisk into Eq. ~4.5!, we obtain

Ptr5
1

21
4DbL

pDa

. ~4.7!

For a long narrow channel (L@a) this translocation prob-
ability takes the form

Ptr'
pDa

4DbL
!1. ~4.8!

Thus, the probability of translocation through a narrow c
lindrical channel in the absence of attractive potential is v
small.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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To analyze how the translocation probability depends
the potentialU(x), we use Eq.~4.4!, where we takeD(x)
5const5D and

U~x!5H 0, 0,x,x1 ,x2,x,L,

2U0 , x1<x<x2 .
~4.9!

This potential has three parameters: the well depth,U0 , and
length,l 5x22x1 , as well as the position of the well cente
(x11x2)/2. The translocation probability in this case
given by

Ptr5
1

21
4Db

pDa
@L2 l ~12e2bU0!#

, ~4.10!

where we have used the expression fork in Eq. ~4.6!. From
Eq. ~4.10! one can see thatPtr does not depend on where th
well is located. For deep wells,bU0@1, Ptr becomes inde-
pendent of the well depth and is given by

Ptr'
1

21
4Db

pDa
~L2 l !

. ~4.11!

The translocation probability approaches its maximum va
0.5, asl→L, so that a deep well occupies the entire chann
This conclusion can also be drawn from the more gen
expression in Eq.~4.4!, as well as from the expressions
Eq. ~4.2!.

V. SIMULATIONS

To test the theory we performed Brownian dynam
simulations for a channel with radiusa55.5 and lengthL
5200 in conditional dimensionless units, taking equal dif
sion constants in the channel and in the bulk,D5Db ~for
more details see Ref. 8!. For the sake of simplicity we use
the square-well potential in Eq.~4.9! symmetric about the
channel center, i.e.,x15(L2 l )/2, x25(L1 l )/2, wherel is
the length of the well. The translocation probability was c
culated for l 5120, 176, and 198 at several values of t

FIG. 2. The record of the number of particles in the channel in the abs
of a potential well~panel a! and in the presence of the well of dimensionle
depth bU05 ln 5 that occupies the entire channel,l 5198 ~panel b!. The
events corresponding to particle’s passage through the channel are m
by the pairs of upward and downward arrows. Most of the particles leave
channel from the same opening they enter. One can see that the translo
is more probable in the presence of the potential well.
Downloaded 31 May 2002 to 128.231.6.52. Redistribution subject to AI
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dimensionless well depthbU0 . Figure 2 shows records o
the number of particles in the channel for the well withl
5198 andbU050 and ln 5 @panels ~a! and ~b!, respec-
tively#. One can see that the number of successful attemp
pass through the channel in panel~b! is greater than that in
panel~a! as the presence of the potential well facilitates p
sage of the particles.

The translocation probability was calculated as a ratio
the number of particles that passed through the channe
the total number of particles that entered the channel.
results presented in Fig. 3 show that the translocation pr
ability increases as the well depth grows approaching
limiting value in Eq.~4.11!. At a fixed well depth the prob-
ability increases as the well length grows. The results fou
in simulations are in excellent agreement with the pred
tions of our theory given in Eq.~4.10!.

VI. CONCLUDING REMARKS

In this paper we have developed a theory to rel
metabolite-channel interaction to the translocation proba
ity of single metabolites. Our theory completely neglec
competition among different molecules. In reality, a metab
lite molecule passing through a channel acts as a ‘‘stopp
for other molecules9 because the molecules cannot jump o
over the other. Therefore, for the efficient work of the cha
nel it is required that the molecules do not spend too m
time in the channel. This means that a channel with a v
deep potential well occupying the entire channel will not
efficient in spite of its high translocation probability. Thu
depending on metabolite concentration, there is an ‘‘optim
potential well’’ that makes the channel most efficient. T
metabolite translocation probability through this chann
would be sufficiently high while metabolite lifetime in th
channel would not be too long.

Here we have studied translocation probabilities of n
tral molecules. In principle, the same approach can be u
to analyze translocation of ions. However, in the case of i
it is not obvious that the problem can always be reduced
one-dimensional one. If such a reduction is justified, o

ce

ked
e
tion

FIG. 3. The translocation probability as a function of the dimensionless w
depth for wells of the lengthl 5198, 176, and 120, from top to bottom. Th
solid curves are drawn according to Eq.~4.10!. The horizontal dashed lines
correspond to the limiting values in Eq.~4.11!.
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theory can be applied after the corresponding potentialU(x)
is precalculated.

In conclusion, it would be interesting to generalize o
analysis to the case of multichannel membrane and to
velop a general approach of the type of Siegel’s theory,10 in
which he considers transport across laterally homogene
membranes. We will address this problem in our forthcom
work.
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